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Critical point in a random side-chain nematic copolymer: 
mean-field theory 

by DENG-KE YANG and CHESTER A. VAUSE 
Department of Physics and Astronomy, University of Hawaii at Manoa, 

Honolulu, Hawaii 96822, U.S.A. 

(Received 5 October 1988; accepted I December 1988) 

A model for anisotropic phases in a random side-chain nematic copolymer is 
proposed and solved in the mean-field approximation. The main results of the 
calculation are the appearance of paranematic and nematic phases and a critical 
point, without the application of external electric or magnetic fields. 

The occurrence of nematic phases in polymeric liquid crystals (PLCs) has been 
firmly established [l]. These phases have features which are common to their low 
molecular weight thermotropic counterparts (monomolecular liquid crystals, MLCs), 
namely weakly first-order isotropic-nematic transitions which can be qualitatively 
described in terms of a classical mean-field (Maier-Saupe) theory [2]. The question 
that naturally arises is are there any theoretically new phase transition phenomena in 
PLCs not found in MLCs? In this paper, we propose such a case. 

The system to be studied consists of a PLC made of a long polymeric backbone, 
with MLC side-chains of two varieties, say A and B, connected to the backbone by 
flexible non-liquid crystalline spacers. If the MLC side-chains are connected to the 
backbone at random, the resulting PLC is known as a random side-chain nematic 
copolymer (RNC) [l,  31. Such RNCs have a property that is unlike the MLC binary 
mixture counterpart; the backbone provides a constraint to disallow phase separation 
of the A-B components as there is no overriding energetic or entropic reason to do 
so. Also, one should bear in mind that the RNC is an effectively infinite component 
mixture and therefore is entropically more prone to a single miscible phase. Such a 
system, therefore, does not introduce the complications that arise in systems which 
phase separate, such as in the binary mixture MLC system. 

Under the above assumptions, a simple mean-field (MF) model of the Maier- 
Saupe type [2] can be constructed as follows. At zeroth order, we assume that the main 
effect of the backbone is to prevent A B immiscibility, and is rather passive otherwise. 
Hence, the RNC is an effective miscible single-phase ‘mixture’ of A and B MLCs 
which are acted upon by the usual dispersive forces. The MF hamiltonian for a single 
A and B MLC is 

(1) 
HA = -[X&ASA (1 - X)&BSB]P2(COS6A), 
HB = -[X&BSA + (1 - x)vBBsB]P2(cos OB), 

where x is the molar concentration of A molecules (0 < x < I), the couplings Fj > 0 
are the effective (long-range) attractive orientational interaction strengths between like 
molecules ( &,, VBB), and unlike molecules (V,, = VBA), P,(cos 6) is the second-order 
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Figure 1. (a) The temperature dependence of the order parameter S, for fixed x (concen- 
tration of A side-chains) and A (reduced B-B interacting strength), ( x  = 0.2, A = 0.2), 
but various values of p (reduced A-B interacting strength). (b) The temperature 
dependence of the order parameter S, in the vicinity of the ordering of S, under the same 
conditions as in (figure 1 (a).) 

Legendre polynomial, and Si = (Pz(cos 0,)) is the usual nematic order parameter for 
species i = A ,  B, 0 d Si < 1, which must be determined self-consistently. It should 
be emphasized that such a MF hamiltonian could not be written for the MLC binary 
mixture since the concentration variable must be a statistically fluctuating degree 
of freedom with interactions present which promote phase separation [4]. The 
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appropriate equations that represent a self-consistent MF solution are 

1 

d(cos ei) exp (- Hi/kB T)P,(cos 6;) d(cos ei) exp (- Hi/kB T )  si = L 
and the total Helmholtz MF free energy 

1 - t ( q )  - k B T h  d(cosOi) exp (- H,/k,T)  , 
i = A , B  
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with xA = x, x, = 1 - x. 
The set (2) and (3) were solved numerically as follows. Without loss of generality, 

we choose bA > V,,, and define dimensionless coupling strengths p = V A B / V A A ,  and 
I = V B B / c A .  For a given x, p and I ,  a reduced temperature z (z = kBT/VAA) is 
chosen, values of S, and S, are obtained by solving (2), and the equilibrium values 
are determined by using ( 3 ) .  

The results of the MF calculation are summarized in the following figures. Figure 
1 shows the z-dependence of the parameters S, and S, for the fixed values x = 0.2, 
3, = 0.2, with p variable. This displays the typical behaviour of the model. For p less 
than a critical value pc (which in this case is pc z 0.0124), S, orders first (since 
3, < x / ( l  - x) = 0.25) at around z = 0.042 (not shown) via the usual first-order 
transition. However, after the ordering takes place, SB finds itself in an effective 
‘external field’ and orders paranematically [5 ]  until it reaches its own first-order phase 
transition (figure 1 (a); S, undergoes similar behaviour as a result of its coupling with 
S, (figure 1 (b)). (If p = 0, then one obtains two independent isotropic-nematic 
transitions.) As p --+ pc from below, a critical point develops in both order param- 
eters, signifying the point at which the distinction between the nematic and para- 
nematic phase disappears. For p > pc, only there is the paranematic phase present 
in S, and therefore no phase transition as shown in figure 1 (a). Figure 2 illus- 
trates the paranematic-nematic behaviour in S, via a critical point by varying the 

h=0.1 p=o.oos 

I 
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r 
Figure 2. The temperature dependence of the order parameter S, for fixed 1 and p (1 = 0.1, 

p = 0.005), but various values of x. 
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Figure 3. The phase diagram in the (A, p) plane 0 < I z  < x/(l - x) with x = 0.2. The 
notation (l,O), etc, is explained in the text. 

concentration x with fixed interaction strengths ( p  = 0.005, I z  = 0.1), a situation 
which may be more accessible experimentally. Finally, figure 3 illustrates a cross- 
section at x = 0.2 of the global phase diagram in the variables (x, A, p). The various 
regions are labelled by the symbol ( o A ,  o,), which denote the type of transition 
occurring at the point where S, orders, oi (i = A ,  B) is the order of the phase 
transition: oi = 0 (paranematic, no phase transition), 1 (first-order), 2 (second- 
order)/critical points). The main feature of the phase diagram is that there is a line of 
critical points, suggesting that there may be some flexibility in obtaining the critical 
point by molecular design. In the global phase diagram, one expects a surface of 
critical points, the determination of which needs future study. 

In summary, if the assumptions of the model for RNCs is qualitatively correct, the 
results of a MF analysis suggests the possibility of designing a RNC which has 
paranematic and nematic phases and a critical point. The possibility of experimentally 
realizing such behavior may be promising since one avoids the complications that 
arise in thermotropic MLCs from applying external electric or magnetic fields [6]. As 
a result, one not only has an interesting system to study critical phenomena, but also 
a material with potentially novel optical characteristics. 

Finally, we would like to thank the referee for several helpful suggestions and for 
pointing out that a similar idea has been used in the discussion of nematic phases in 
comb polymers [7]. 
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